

Hydrogen Water Testing & Certification

H2 Analytics 2505 Anthem Village Dr. Suite E385 Henderson, NV 89052 support@h2-analytics.com

Report #: 24120401 (final)

Laboratory Report

Introduction

This report summarizes the testing of a hydrogen water bottle distributed by Yunshen Smart Tech (Shenzhen) Co Ltd, China. The product is a batteryoperated portable bottle that produces hydrogen water using electrolysis. The bottle is a sealed system that allows the internal gas pressure to build resulting in a higher concentration of molecular hydrogen gas (H₂) than can be attained under conditions of normal atmospheric pressure. This testing was requested by Yunshen Smart Tech, Shenzhen, China. The bottle was received for testing on 11/6/2024 in a factory-new box and included a magnetic USB-C power cable, spare seals, and a user manual. Two replacement bottles/caps (#12 & #13 without bases) were received for additional testing on 11/29/24.

Tests requested: Dissolved H₂ for the following cycle times: 5-min, 10-min, & 15-min; Retest 15-min cycle by using two replacement bottles on the original electrolysis base.

Product Description

Name: Supersaturated High Concentration Hydrogen Rich Water Bottle

Brand: H2yunshen

Model #: H-B-HEX5

The bottle is a battery-operated device that uses electrolysis to produce and infuse hydrogen gas (H₂) into the drinking water. It has a single-walled, polycarbonate reservoir with a volume of \approx 230 mL. Because the design allows for pressure to build during electrolysis, it is capable of dissolving hydrogen at concentrations higher than the maximum concentration at sea level, 1.57 mg/L (1570 ppb). To prevent an unsafe buildup of pressure, the cap includes an internal pressure relief valve. The unit has two pre-programmed cycle times, 5 minutes (by touching the power button once) and 10 minutes (by touching the power button a second time). The bottle has a rechargeable lithium-ion battery to permit portable use and includes a charging cable (magnetic USB). The front panel digital display shows the battery level and the amount of time remaining in the selected cycle. Because the design utilizes a proton-exchange membrane (PEM) sandwiched between two platinum electrodes, this unit will work with any type of drinking water, including distilled, regardless of the mineral content.

Materials & Methods

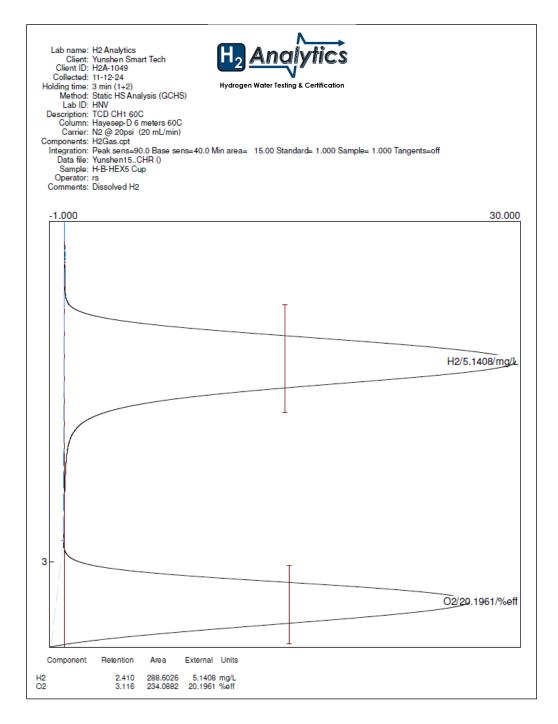
Water: generic, distilled, pH 6.28 ± 0.25 ; starting temperature $23.9^{\circ}C \pm 1.5 = EC$: 2 us/cm Laboratory elevation: 883 meters (0.90 atm); all measurements adjusted to sea level where applicable. Gas Chromatograph: SRI 8610C, Torrance, CA; column: Hayesep-D 6M; column/oven temp: 60°C; detector: tungsten-rhenium TCD; carrier gas: N₂ Calibration gas: Cal Gas Direct, Huntington Beach, CA; GC Test Method: Static headspace analysis (HS-GC) Calibration (H₂): 2-point (3.05 / 6.09 mg/L), performed on the day of testing using H₂ calibration gas

The battery was fully charged and the membrane wetted overnight before testing. All tests were conducted with the USB charging cable connected.

For each dissolved H_2 test, the bottle was filled with distilled water just below the cap threads, the cap was securely tightened, and the power button was pressed either once to start the 5-minute cycle, or twice to start the 10-minute cycle. For the 15-minute tests, an additional 5-minute cycle was initiated at the end of the first 10-minute cycle (without opening the bottle). After each cycle was completed, the cap was removed, and a 2000 uL sample was drawn using a gas-tight syringe and injected into the headspace vial. The headspace vial was then placed into a 2400 rpm centrifuge for 1 minute followed by a 2-minute rest to permit the dissolved H_2 in the water sample to equilibrate with the headspace. After equilibration, a 1000 uL sample of the headspace was drawn using a gas-tight syringe and injected into the GC for analysis. After completing three tests, the results were recorded, and the mean and standard deviations of the three dissolved H_2 concentrations were calculated. Based on the mean dissolved H_2 concentration and the volume of water in the bottle, the average amount of H_2 that would be ingested when drinking the entire contents was calculated and reported as "H₂ Ingested Dose". Attachment 1 includes a sample chromatogram (10-minute test). A single test was repeated for each replacement bottle/cap as described above (no SD calculated).

Results

Mean dissolved H ₂ , 5-min:	2.42 mg/L (2420 ppb);	SD: 0.09;	H ₂ Ing
Mean dissolved H ₂ , 10-min:	5.06 mg/L (5060 ppb);	SD: 0.48;	H ₂ Ing
Mean dissolved H ₂ , 15-min:	5.03 mg/L (5030 ppb);	SD: 0.08;	H ₂ Inge
Mean dissolved H ₂ , 15-min (#12):	6.69 mg/L (6687 ppb);		H ₂ Inge
Mean dissolved H ₂ , 15-min (#13)	6.89 mg/L (6891 ppb);		H ₂ Inge


D9; H₂ Ingested Dose: 0.56 mg
H₂ Ingested Dose: 1.16 mg
H₂ Ingested Dose: 1.16 mg
H₂ Ingested Dose: 1.54 mg
H₂ Ingested Dose: 1.58 mg

Approved By: Randy Sharpe

Title: Director of Testing

Report Date: 12/4/2024

Sample Chromatogram (10-minute cycle)